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With more than 35 billion semiconductor devices analyzed every year, Optimal+ is in a unique 
position to observe and identify the root causes of device failure across the entire semiconductor 
industry. And with increasing focus on quality and reliability across all segments  beyond just 
automotive, medical and mil-aero, it is more critical than ever for companies to leverage every 
byte of test data at their disposal to ensure that they deliver the lowest possible DPPM (defective 
parts per million) rates to their customers. 

With semiconductor manufacturing operations now generating up to 100TB of test data annually, 
the ability to analyze trends across global manufacturing supply chains and generate actionable 
insights in real-time becomes a significant challenge.

Optimal+ Outlier Detection provides the industry’s only complete, end-to-end solution for 
the detection of outlier units from good device populations and is a key component in the 
establishment of a “quality firewall” by rapidly identifying such outliers and triggering rules-based 
actions to automatically re-bin them with no manual intervention required. 

This solution has been proven in multiple high-volume manufacturing environments to reduce 
outgoing DPPM rates to the single digit range, resulting in higher-quality electronic systems and 
lower RMA (return material authorization) rates in the future. 

Figure 1: Closed loop solution
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OUTLIER DETECTION METHODS
There are many different approaches to looking for outliers in semiconductor test data using the 
Optimal+ Outlier Detection statistical solution: 

	 Part Average Test (PAT) Algorithms

	 Statistical Adaptive Limits 

	 Bivariate and multivariate analysis

	 Drift Detection

	 Quality Indexing

PAT ALGORITHMS
PAT algorithms are used to find an “outlier” across a good population of parts by identifying some 
combination of abnormal characteristics (parametric and/or geographical). PAT algorithms are 
statistical by nature and are run on manufacturing test data typically after wafer test. They can also 
be run after final test when Unit Level Traceability (ULT) data is available. The PAT algorithms used 
in the Optimal+ Outlier Detection solution consist of industry best known methods (BKMs) and 
are aligned with the Automotive Engineering Council (AEC) guidelines to identify geographic and 
parametric outliers.

The algorithms discussed below have been in broad production usage for many years by Optimal+ 
customers and have been used to successfully screen countless units in both IDM and fabless 
manufacturing operations. These PAT algorithms, known as “rules” in the Optimal+ environment, are 
also highly flexible and customizable which allows them to be easily tailored to a specific product’s 
quality requirements. 

The user can define a PAT rule (also called a PAT recipe) that is automatically run on the 
manufacturing data looking for results that fall outside a specific boundary. In addition, due to the 
high level of integration of the Optimal+ solution in the semiconductor supply chain, any outlier 
parts detected can be automatically re-binned before the next test insertion, saving significant costs 
associated with downstream test time and/or packaging and assembly costs.

The PAT algorithms in the Optimal+ Outlier Detection solution include: 

	 GPAT (Geographic PAT)

	 DPAT and SPAT (Dynamic PAT and Static PAT)

	 GDBN (Good Die/Bad Neighborhood)

	 NNR (Nearest Neighbor Residual)

All of these rules can be aggregated to be run across multiple test insertions (e.g. wafer sort and final 
test) and across multiple OSATs to enable companies to establish a comprehensive “quality firewall” 
across their entire manufacturing supply chain. This will be covered in more detail in the Data-Feed-
Forward and Quality Index sections.
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Figure 2: GPAT Algorithm Settings

GPAT
The user has many options to control the “cluster” settings within the GPAT algorithms as shown in 
Figure 2. The user can define on which devices (Good Bins) the algorithm will be used, and also set 
up the parameters for cluster identification and identify how to re-bin the devices determined to be 
surrounding that cluster. 

The wafer map in Figure 3 shows a number of original good dice (marked in blue) which are automatically 
reassigned from good bins to bad bins after the GPAT algorithm has been run. The automatic bin reassignment 
is made possible through the Optimal+ global data infrastructure which is available to every Optimal+ customer.

Figure 3: Wafer Map after Outlier Detection
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DPAT AND SPAT
Optimal+ Outlier Detection allows users to run either Dynamic PAT or Static PAT algorithms on 
all tests or a user-selected subset of tests. Test entrance criteria can also be set to filter out tests 
with unwanted statistical distribution (such as tests which are not continuous). Similar to the GPAT 
algorithms, a high level of user configuration is allowed for rapid setup on full test coverage while 
maintaining a high level of flexibility to define specific algorithms per test. In addition, an option to 
use Automatic Dynamic PAT algorithms is available that takes into account each wafer/lot and test 
statistics during execution. 

The user has many options to control the settings within the DPAT and SPAT algorithms. In Figure 
4, the user can define on which devices (Good Bins) the algorithm will be used and how to re-bin 
such parts. The user can also select any configuration of DPAT algorithms per test or group of tests.

The histogram in Figure 5 shows the distribution of a test for good parts. Using DPAT, a new upper 
limit was established resulting one significant outlier that can clearly be seen and will be binned 
out automatically as the PAT rule executes.

Figure 5: DPAT Algorithm Output

Figure 4: DPAT Algorithm Setting
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COMBINING RULES AND RUNNING SIMULATIONS TO REFINE RULES
As mentioned earlier, Outlier Detection is one of several software solutions from Optimal+. One 
of the benefits of being connected to the broader Optimal+ environment is access to a graphical 
scripting language called Sequoia. 

Using Sequoia’s simple graphical interface, PAT algorithms can be combined to create a more 
comprehensive solution for detecting outliers (See Figure 6). In addition, within the Optimal+ 
environment, users can run detailed simulations and generate reports to “fine tune” any rule and 
verify its efficiency before it is activated and deployed for use in volume production. Once a PAT rule 
is approved, its deployment into the entire global supply chain is managed automatically.

STATISTICAL ADAPTIVE LIMITS
In addition to PAT algorithms, Optimal+ also provides real-time rules within the Outlier Detection 
solution. Users can identify outliers on devices based on statistical adaptive limits that are calculated 
automatically on baseline material and dynamically updated to the original test program limits. This 
capability is specifically designed to support devices where ULT data is NOT available and does not 
require a lot to be re-tested to segregate the outlier parts from the good parts. The major benefit of 
this type of outlier detection is that it takes into account any change in the performance of the test 
program results over time. 

After the user sets the baseline population needed to start the adaptive limit process and specifies 
how often such control limits are updated, the test program limits are automatically adjusted by 
temporarily updating the original test program limits without requiring any involvement by the test 
engineers. This flow is shown in Figure 7. 

Figure 6: Example of Outlier Detection using multiple algorithms in sequence



7

OUTLIER DETECTION WHITE PAPER

Figure 7: High Level Flow of Adaptive Limits

Outlier Detection also allows the user to track the “native outliers” (“fails” that are outside of the 
original test program limits) vs. the “adaptive outliers” (“fails” that are outside of the Adaptive Limits) 
as shown in Figure 8.

Figure 8: Native vs. Outlier Fails
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The chart in Figure 9 shows the actual trend of one test across several tested lots. A user-specified 
number of lots are used as the baseline to calculate the adaptive tests limits (which are typically much 
tighter than the original spec limits, shown in the blue shaded region). Once such limits are applied on 
new lots being tested, outlier parts are automatically binned out in real time.

BIVARIATE AND MULTIVARIATE OUTLIER DETECTION
The Outlier Detection Solution also includes a Correlation App that supports both bivariate and multivariate 
analysis that allows the user to automatically find the best correlations among a large number of tests, 
either within the same test socket or between different test sockets. This capability has become a critical 
aspect of big data analytics for many companies since bivariate and multivariate outliers have a greater 
probability of failing at a later test insertion step or at the end customer.  

Once any bivariate/multivariate correlation is defined and acknowledged, it is evaluated for every wafer 
in the dataset and then by using automated rules any detected outliers are re-binned accordingly. 

The table and graph in Figure 10 show a strong correlation between 2 different tests (R 2̂ > 0.99) but a 
clear bivariate outlier is identified. Note that this outlier unit is well within the distribution when looking 
at each test individually.

Figure 9: Outliers Identified Via Adaptive Test Limits

Baseline timeframe
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Figure 11: Using Principle Component Analysis to find Multivariate Outliers

MULTIVARIATE
The charts in Figure 11 show how multivariate outlier detection can be performed using a Principal 
Components Analysis (PCA) approach. PCA is used for reducing the number of parametric tests by 
aggregating them into Principal Components (PC’s). The left side shows the cumulative variation 
based on the sum of multiple Principle Components (PCs), with the first 10 PCs comprising ~98% 
of the variation. The images on the right show the PC distribution of a good lot (top right) and 
bad lot (bottom right). Using this type of analysis, it is easy to identify the long tail of multivariate 
outliers in the bad lot.

Figure 10: Bivariate Outlier Example
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DRIFT DETECTION 
Another means for finding outliers is through the identification of a “drift” of any parameter measured at 
different test insertions (e.g. at different temperatures or before & after stress testing). The purpose of testing 
the same part under different conditions is to highlight a potential quality situation related to a statistically 
significant difference in measured results.  Outlier Detection provides a comprehensive solution for this type 
of outlier identification which can also be implemented to take place automatically and in real-time through 
a Data Feed Forward process that can work across a distributed supply chain as well as within a single test 
floor during wafer sort or final test (usage at final test requires ULT). 

For the example shown in Figure 12, while a specific result is measured at the second test insertion, the 
result from the first test insertion is automatically recalled from the manufacturing test database and the 
delta is computed between the two results. If the calculated “drift” exceeds a user-defined limit, the part 
is automatically assigned to a different bin to prevent it from being shipped into the supply chain. Drift 
detection is already implemented at several Optimal+ customers to ensure the highest levels of device 
quality for mission-critical applications.

QUALITY INDEX
The final facet of outlier detection provided by the Optimal+ 
solution is the Quality Index which is a measure of the “goodness” 
of the die through the computation of multiple results in the test 
data. The Quality Index can be comprised of any of the previously 
mentioned Outlier Detection results (PAT, statistical adaptive 
limits, bivariate/multivariate analysis, and drift detection) as well 
any user-selected metadata (the location of the unit on the wafer, 
the number of times the part was tested, the test equipment 
health during the time of testing etc.) to establish the complete 
“test DNA” of a device as shown in Figure 13. Figure 13: Quality Index – High Level Flow
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Figure 12: Drift detection example

Proxy Server

FTn+1FTn

OPTIMAL+ DATABASE
(Cloud or On-Premise)

During FTn+1, the test 
result is compared to 
the FTn value. Units 
that exceed the "drift" 
spec are binned out

OTDF File loads
into O+ DB at the
end of FTn Operation

FINAL TEST TESTER



11

OUTLIER DETECTION WHITE PAPER

SUMMARY 
In closing, the Optimal+ Outlier Detection solution represents a superior approach to maintaining 
and ensuring the highest levels of product quality and reliability for the semiconductor industry. It is 
the only closed-loop, infrastructure-based solution in the market and has been proven to limit test 
escapes, lower DPPM rates and reduce costly RMAs. The solution comprises PAT algorithms, bivariate/
multivariate detection capabilities along with fully integrated data-feed-forward analytics and real-
time quality indexing to provide the most comprehensive quality coverage for your semiconductor 
manufacturing operations.

The focus of this whitepaper was to introduce the powerful statistical and outlier detection 
capabilities of the Optimal+ solution. Outlier Detection is just one component of the “quality firewall” 
that Optimal+ can provide. To learn about our deterministic Escape Prevention capabilities  that 
compliment Outlier Detection or to schedule a demonstration, please contact your local Optimal+ 
sales representative at 
http://www.optimalplus.com/contact_us.

 

Figure 14: Quality Index Plot

The index result can then be used to make decisions such 
as pairing of parts in MCPs (multi-chip packages) or to 
initiate Adaptive/Selective Burn-In. In the case of Adaptive 
Burn-in, the index can be used to further reduce test costs 
with no compromise on the outgoing quality or DPPM 
rate. The data collection and computation of the Quality 
Index can be done in real-time and across distributed test 
insertions.

The plot in Figure 14 shows the distribution of the 
Quality Index on a large number of good parts. In this 
example, the parts with the lowest Quality Index are not 
sent to Burn-In in order to ensure meeting a customer’s 
requirement for zero DPPM.
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